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ABSTRACT

The current status of two-dimensional chemical laser modeling
at Los Alamos is reviewed, with emphasis on numerical methods for
coupling the radiation field to the fluid dynamics so that laser
power can be calculated. The primary computational model is
embodied in a two-dimensional time-dependent computer code called
RICE-RAD. The RICE-RAD code was developed by incorporating radiation
and lasing into the basic RICE ccde for transient compressible
multicomponent reactive fluid flow. A steady-state solution is generated
as the asymptotic limit of ; time-dependent calculation in which the
radiative time scale is artifically lengthened to make it comparable to the
fluid dynamical and chemical time scales. This procedure generates a fully
converged simultaneous solution to the coupled steady-state radiatiom
1ntensit§ and fluid dynamice equations. Threshold, J-shifting, and
cutoff are fully and automatically accounted for without the necessity
of special logic and testing. Example soluticns are presented to illus-
trate the application of the code to several existing and proputced
chemical laser systems. Finnliy. an alternate approximate method is
described for estimating laser power based on nonlasing (small-signal)

vibrational distributions as input.



INTRODUCTION

For the past several years, Group T-3 of the Los Alamos
Scientific Laboratory has been engaged in two-dimensional chemical
laser modeling for the Air Force Weapons Laboratory. In the preseat
paper ve reviev the current state of our computational model and
present the results of several calculations that have been performed
during the last year or so. We also present a nev simplified
method for estimating CW laser power based on nonlasing vibra-
tional distributions.

The fluid dynamical part of our computational model is embodied
in the RICE code [1-3). RICE 1s an Eulerian finite-difference computer
code for calculating two-dimensional, time-dependent, compressible fluid
flow. The code svulves the complete Navier-Stokes equations and, hence,
automatically represents such features as transverse pressure gradieuts
and recirculation regions. A steady-state solution is generated as the
asymptotic limit of a time-dependent calculation. In addition
7 planar flow, a varisble-area cspability is included that allows the
quaai—tvo—dinennionnl Tepresentaticn of flow between plates of variable
apacipg. Cylindrical geometry is a special case of this variable-~area
capability. RICE is a multicomponent code that includes the

effe:ts of multicomponent diffusion and chemical reactions between compo-



nents (-pecies). The number of species and chemical reactions 1is
arbit_:raﬁ within the limits imposed by computer time and storage
constraints. RICE utilizes the ICE nuserical technique

[4-6) for performing efficient fluid dynamics calculations at all
Mach numbers. Traditional explicit methods sre inefficient at low
Mach numbers because of the Courant sound-speed timestep stability
restriction. The ICE method avoids this restriction by adopting a
pertially implicit formlat,ion. .

The basic RICE code does not include the effects of radiation
and hence is limiced to calculations of nonlasing (small signal)
behavior. However, many of the questions that arise in connection
vith chemical lasers are essentially fluid-dynamical in nature, and
the RICE code allows s.uch quesations to be addressed with-a precision
not possible in most other codes. For several years our work was
exclusively concerned with questions of this kind. Nevertheless, it
"is dasirable also to have the capabilif:y to estimate laser power out-
put. For this purpose, an optics model was devised and incorporatad
into RICE. The resulting code, RICE-RAD, allows one to perform
complete CW laser power calculations, with the radiation field fully
coupled to the fluid dynamics in a self-consistent fashion.

ME RICE-RAD OPTICS MODEL

The RICE-RAD optics model is based upon the radiation-transport-
theory description summarized by Emanuel [7]). The principal assumptions
are (1) the lasing cavity is taken to be a Fabry-Perot resonator;

(2) a Doppler line-shape is assumed, with hole burning neglected,

and lasing is sssumed to occur at line center; (3) rotational equilib-



rium is assumed; and (4) transverse variations in the rsdiation
intensities are neglected. As is well known (7], sssumptions (1)

and (3) together imply that only a single line in each vibrational band
can lase at one time. This line always occurs ia the P-branch.

In order to incorporate radiation into the RICE code, two main,
modifications were necessary. First, the appropriate radistive terms had
to be added to the lasing species continuity equations and to the internal
energy equatioa. These terms introduce the radiation intensities I'
into the equation system. Second, equations for the Iv had to be added
to determine thess additional variables.

Because RICE is a transient code, it is natural to use the transient form
of the radiation transport equation, averaged over rhe transverse direction.
However, the radiative time scaie is very short compared to the fluid dynamical
and chemical time Fciles, a circumstance which would ordinarily require that
vVery small timesteps be taken. To avoid the inefficigncy this would entail,
ve artifically lengthen the radiative time scale to make it comparable
to the fluid dynemical and chemical time scales. This 18 permissible
because the coefficient that Jetermines the radiative time scale drops
out of the equations in steady state, and can therefore be arbitrarily
adjusted without altering the steady state solution.. With this mod-
ification, the fluid dynamics and radiaticn equations evolv: on the same
time scale and can Le efficiently marched out to steady state together.

The resulting equation for the Iv is

alv

EO A s (1)



uhero_l' is the radiation intensity in vibrational baﬁd-(v+1+ v),
Tv is the corresponding gain for one pass through the system, G is
the mirror lose coefficient, and a, is the coefficient that specifies
the artificial f’diative time scale. According to our ftevious
assumptions, all the intensity Iv is preseﬁt in a eingle transition,
nsmely the tFanlition which maximizes T,- This transition is conven-
tionglly denoted by (v + 1, -1 - (v,3)), and 18 1dentified by
thé rotational quantum number J:.

' Solving the transient BEq. (1) for the I, has several advantages.
By inspection, it is seen that in steady state either T, "G
(the usual gain-equals-loss condition) or Iv = 0 (the band in question
is not lasing). Thus each vibrational band is allowed to lase indepen-
dently of the others; at its own value of J:. Threshold and cutoff are
fully and automatically accounted for without the necessity of special
testing and coding logic.

S8ince Eq. (1) involves no spatial derivatives, a simple time-centered
numerical scheme is used for its solution. The coefficient a, 1s
constrained by stability and by the requirement that the I, change
- only slightly‘from one time cycle to the next. This latter requirement has
the effect of making the radiative and fluid dynamical time scales approx-
mately the same, because the timeatep itself is chosen to prevent the f£luid
dynnnical vaziables from changing too much over one cycle.

" The above discuséion is necessarily very brief and is intended only
to convey the flavor and essential ideas of the RiCE-RAD optics model. A
detailed description of the model is available in Ref. [8]. We now proceed

to shov some of the results obtained in calculations using the RICE-RAD code.



NUMERICAL EXAMPLES

Our first full-scale RICE-RAD lasing calculation is a simulation
of CL~V run HB5-1989 [9]. The geometry is shown schematically in Fig. 1.
The region of computation is the region downstresm of‘a typical pair of
half-nozzles. The nozzle bank_in composed of 115 such pairs. Similiar
conditions are assumed to obtain dowmstream of each pair, so that the
lateral boundaries (extended nozzle centerlines) are symmetry planes.

Five DF vibrational lcvels were 1néluded in the calculation (v = 0 to 4).
Chemical reaction rate co?fficients were taken from Cohen's DF compilation [10].
Initially 56 reactions were included in an effort to model the important
deactivation reactions. DP-DF V-V transfer was 1included, but vibrational
levels of D2 were not represented and hence DF—D2 V-V trausfer reactions
vere not included. We later reran the calculation with the number of
reactions reduced to 16, onitting most of the baclorard reactions and all thg
DF-DF V-V transfer reactioas; the results were essentially unchanged.

Nozzle exit plane boundary conditions for the calculation were
obtained from M. C. Cline of our group, who perfcimed the'necessary viaczous
nozzle calculations usiﬁg his VNAP code [11]. (Cline's VNAP code is
unrelated to the TRW VNAP code.) The nozzle calculations did no%
include chemistry, and mass fractions of the various species at the
nozzle exit plane vwere taken to be uniform. Thus F-atom recombination
at the nozzle walls was neglecicd. .

Figure 2 showa the velocity vector plot for the region
0 € x < 0.45 cm. The scale is such that the largest velocity in the
region is about 2.5 ; 105 cm/s. Since the CL-V nozzles are

uniformly flared, the velocity in the nozzle exit plane has a transverse



couponent. The transverse momentum density in the fluorine stream is
considerably larger than that in the deuterium stream, so that the
deuterium is compressed by thz expanding fluorine streaﬁ.

Figure 3 shows the pressure contour plot in the same regiom,

0 € x< 0.45 cm. Note the presence of substantial transverse pres-
sure gradients in this region, even though the nozzle exit pressures
are matched to within a few percent.

The pressure contour plot for the region 3.05 cm € x < k.SS.cn
in shown in Pig. ;. Here th? pressure variations are much weaker in
magnitude. The most noteworthy feature of the plot, however, is that
the pressure contours form a regular pattern of alternating high a.d low
pressure islands. This pattern is symptomatic of the reflections of Mach
waves at the top and bottom symmetry boundaries, By inspection,
the waveleagth for this pattern is about 1 cm, which correlates
very closely with the wavelength one would predict on the basis of
the Mach angle and the height of the region. These Mach waves
have an interesting effect on the laser power profile, as will be seen
shortly.

Figure 5 shows transverse profiles of the molar densities of Dy»
¥, and total DF at x = 4.0 cm. From this plot it is clear that the
system is very D2 rich. The small area of overlap of the D2 and F
streams in comparison with the DF area shows that the production of

DF is primarily mixing limited rather than chemistry limited.
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This implies that the calculation as a whole should be relatively
insensitive to the overall cold reaction rate coefficient (but not
to the pumping fresctions). This insensitivity bas been confirmed by
Zelazny et al. [13]. . -

Figure 6 shows transverse profiles of éhe DF vibrational levels at
x= 4.0 co. The profiles have maxima in the mixing lsyer, wvhere the
DF iu-being produced, and their relative peak values reflect a typical
par:ial inversion in the presence of lasing.

-Thc pover profile for the calculation is shown in Figure 7. The
quanticy plotted is the power per unit length, the integral of which
gives the total power. The most noteworthy feature: ~f the curve are
the sharp peaks. Inspectinn shows that the peaks occur in groups of two
with a spacing of sbout 1 cm between adjacent groups. These peaks are
corr>lited with, #nd in fact caused by, the Mach waves mentioned earlier.
Wherever the Mach wave intersects the mixing layer, thq rate of production
of DF is locally enhanced due to the associated comnression and heating.
The intersection occurs twice per wavelength, which is why the peaks occur in
groups of two. The spacing between the two peaks in a group is somewhat
different from half the wavelength because the mixing layer is not exactly
centered between the symmetry boundariee, Because it involves oblique
shock waves and transverse piessure gradients in an essential way, this
effect cannot be described in the boundary layer approximation. Exper-
mentélly. these power peaks are not observed because the use of a hemispherical
mirror has the effect of averaging the power profile over x, However, the
Mach waves are still present, thereby emhancing the local Dr production and

the total power,



In the present calculation, the calculated total power is higher
thqn the experimental value by approximately a factor of two. Part of
this discrepancy is due to the fact that we inadvertently set the spectro-
scopic constant @exe to zero. If this error had not béen made the calculated
power would havc been about 13-kW, which is still too high., However, this
agreement is coneidered satisfactory in view of the omission of a number of
potentially important effects from the calculation. Among the most
important of these are (li ?-atom wall recombination; (2) DF-D2 V-V transfer;
and (3) rotational nonequilibrium. Other uncertainties include (1) the
effect of the hemispherical mirror; (2) three-dimensional effects associated
wvith the shroud expansion and boundary layers; and (3) uncertainties in
d . Efusion coefficients and reaction rate coefficients, in particular the
modeling of -llt:l.quan'tt- deactivation in terms of effective single-quantur

deactivation rates.

The basic CL-V galcuintion Just described was rerun in cylindrical

" coordinates to simulate a hypothetical CL-V cylindrical laser. The

dismmeter of the cylindrical nozzle bank was taken to be 46 cm. The

equivalent shroud expansion half-angle for the one-inch-high CL-V

nozzle bank 1s 3° (neglecting shroud boundary layers). In spite of

this small angle, relatively large effects were observed. The pressure

on the line y = 0.119 ca is plotted vs. x for both the rectangular and
cylindrical cases in Fig. 8. The cylindrical expansion provides

considerable pressure relief; at x = 8 cm the pressure in the cylindrical case
is only about 14 torr-and is rising very slowly, while in the rectangular
case, the pressure is about 25 torr and is climbing at a rate of about 2 torr/cm.

A ‘similar effect is seen in Fig. 9, which shows the maximum temperature



on a line of constant x versus x for the'tvo cases. Thé cylindrical
temperature is considerably less than the rectangular (by almost 90°K at

x = 8 cm) due to the expansion. Finally, the power profiles for the two cates
are compared in Fig, 10. The cylindrical profile is normalized to the same
mass flow rate as in the rectangular case, and w,x, was again set equal to
zero to facilitate the comparison. Thc two power profiles are essentially
identical out to about 3 cm, but begin to differ noticeably thereafter.

Cutoff occurs considexably farther downstream in the cylindrical case, and

the total powver ig about 337 higher than in the rectangular case.

We now describe briefly a chain reaction laser calculation performed
using RICE-RAD. The calculation was performed for HF lasing using the
Rocketdyne baseline nozzle array. The fluorine dissociatiom fraction was
@ = 0.1 and the diluent ratio was f§ =60, The diluent was helium and was
present only in the fluorine nozzle. The large value of P was necessary
to prevent choking. The first seven vibrational levels of HF were considered
(v=20 to 6), Vibrational levels of H2 were not included. Both hot and
cold reactions were included, and the chemical reaction rate coefficients
were obtained primarily from Cohen's latest HF compilation [14]. However,
the inverse cold reaction rates for v # 3 were increased in an attempt to
allov for the large removal rate of HF(3) by H atoms observed by Bott and
Heidner [15]. A total of 29 chemical reactions was included in the
calculation; -

Figure 11 shows the maximum temperature on a line of constant x
plotted versus x. The maximum temperature starts out high because of
viscous heating at the nozzle walls, falls off sharply to a low value

of about 220°K which persists down to about x = 25 cm, and then begins
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to rise rapidly as the chain reaction finally begins to “take off". The power
profile for the calculation is shown in Fig. 12. There is a peak in
the high-temperature region near the nozzle exit plane, but the power
falls off sharply, and then more gradualiy, to a m;nimum.at about x = 23 cm.
The power then begins to increase with x, 1n'a nearly linear fashion, |
as the chain reaction proceeds. The calculation was arbitrarily terminated
at x = 50 cm, on the ground that it is probably not reasonable to contemplate
using larger mirrors than that. The épecific power out to this point is
g= ‘6.1 kJ/1b. However, the power profile is still increasing at this
point, and if the calculation were continued farther dovmstream it appears
that conaide;gble additional power would be obtained. 1In fact,
only 27% éf‘the incoming fluosine has reacted by x = 50 cm. If the same
basic fluorine efficiency could be maintained unti. all the fluorine is
gone, a specific powsr of about 170 kJ/1b would result. Uf course, to
achieve this result in a practical configuration, it would also be necessary
to vary the flow conditions in a way that would considerably shorten the
lasing zone without seriously alteriné the efficiency.
ALTERNATE OPTICS MODEL

We now describe an approximate alternative method for estimating
laser power based on non-lasing (small-signal) vibrational distributions
a8 jnput. This method 15 a fﬁrther refinement of the approximate
‘steudy-state lasing prescrirtion described in Secrion 4 of Reference [8].
The niw method differe frdm the earlier one in the way in which the power
18 calculated once the lasing population dennitieg have been obtained. The
new power calculatfon is less exact than the earlier one, but it is much

simpler and easler to implement.
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There are several teason§ vhy an approximate method -of ghia kind 1s
of 1ntere;t. If a ltelﬁy-atate calculation without lasing has already
been performed, one would like to be sble to estimate the corresponding laser
power simply and quickly without performing another co-pieta steady-state
calculaticu with lasing. The présent method provides a means of doing
980. Anctier wotivation for considering such an approximate method is
that the basic RICE-RAD method already descr}bod does not work well at
high pressures (p > 0.3 atm). The system of coupled radiation intensity
and lasing species equations appears to become very stiff and convergence
difficulties are experienced. The approximate method a7oids tais difficulty
by reformulating the problem so that the determination of the lasing
species populations 1-_¢sscnt1111y uncoupled from the determination of
the radiation intensities.

The approximate method for estimating CW laser power depends upon the
fact that the basic fluid dynamical variables are essentially the same
whether the systzm is lasing or not. This may at first appear surprising,
because vhen the system is lasing the radiation field removes energy which
would otherwise be released as heat. However, this effect is relatively
small, because typical chezical laser efficiencies are on the order of 10X
or less. Thus even when the system is lasing, roughly 901 of the chemical
energy 1s still released as heat, and the difference in temperature between

the lasing and non-lasing cases is conrequently small. One might worry that

even a small temperature difference could produce a large effect
because of the very strong temperature-dependenca of the chemical
reaction rate¢ coefficients. This potential effect is largely

ameliorated by the fact that the diffusion-type lasers of interest
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hare are primarily mixing-limited rather than cheniéiry liliied.
Thus the primary effect of lasing is to redistribute the lasing

species vibrational populations, and the effect of lasing on the
primary fluid dynamical variables may be neglected to a firat approx-
imation.

Another simplification that the approximate method utilizes is
that the vibrational populations in the presence of lasing are only
weakly dependent on the actual values of the radiation intensities.
It 1s this fact which allows the determination of the lasing species
distribution to be uncoupled from the determination of the radiation
intensities and power. The lasing species populations are determined
by the gain-equals-loss condition, together with a reasonable assur—tion
about the distribution of the total gain 1# the transverse direction.
The resulting expression for the vibrational populations in the presence
of lasing is given by Eq. (50) of Ref. [8]. This expression is a
gemeralization of one given by Pmanuel and Whittier [16]. The equation
is most easily discu;sed in the closed-cavity limit, in which it takes
the particularly simple form )

Py

B' (1-B 0
gl YA @
: 2

vhere p: is the nonlasing partial density of level v, Py is the partial

dengity of level v when the.aystqm 1§ lasing, NV 1§'£he total

"number of vibrational levels being considered (including the ground

state), and

B = exp{-ZJ*er/T} ' | (3)
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vhere Or is the characteristic rotational temperature of the lasing
specles, T is the absolute temperature, and J. ie the value of the
rotational quantum number for which the maximum gain occurs. In
contrast to the more exact RICE-RAD method, a single value of s

*
used here for all vibrational bands. Since J depends on the Pys B
is an implicit function of the Py and Eqa. (2) and (3) must be solved

simultaneously for the Py This 18 conveniently done by iteration. First
J* is evaluated from the p: to determine a first guess for B. This B
then determines a first guess for the p_ from Eq. (2). These p  then
determine a new J* and hence a second guess for B, and so on.  This
procedure converges rapidly, with 10 to 20 iterations typically being
sufficient. However, special care must be taken at high pressures
because of the sensitivity previously mentioned. A procedure which

works well is to initislize J  to its minimum possible value (one) at the
start of the calculation, allow it to increase at a rage of at most

one per iteration, and not allow it to decrease. In this way J* approaches
its final value gradually from below. This procedure also prevents the
cyclic behavior alluded to in Sect. 4 of ref. [8], which sometimes

caused J* to alternate between two adjacent values even in low-pressure
problens.

Since we are concerned with a two-dimensional description, the Py
are functions of both the longitudinal distance x and the transverse
dietance y. They must be determined by a local application of the
preceding formulaa at each point (x,y) in the laling cavity. J’. however,
is a function of x alone, but a functional of the y~dependence of the

Py



The procedure described above for determining the -lasing species
popnlations Py from the p: is the same as that described in Sect. &
of Ref. [8]. However, the laser power is now calculated from the L
in a new and simplier way. Actually two new approxinafe pover formulas

have been developed. The simplest and least accurate formula is
w1l

NV-1 _ _
P(x) -%2; § vy )1e2 @0 (@) Ju(mA), ®)
= :
vhere P(x) is the 1ntegrufed power from the nozzle exit plane (x=0)
to the downstresm point x, N is Avogadro's number, h is Planck's
constant, M is the molecular weight of the lasing species, vy,
is the spectral frequency of the transition (v+1.J‘-1) +> (v.J*).
u(x) is the velocity, and A(x) is the variable area fungtion. For
sisplicity, Eq. (4) and the following equations are written in one-
dimensional variable-area form, but the generalization to two
_ dimensions 1s straightforward and it is the two-dimensional formulation
that we actually use. Equation (4) has a simple intuitive interpretation:
it attributes the‘laeerlpower in the region upsteam of x to the difference
batween the vibrational energy per unit time leaving the gystem in the
nonlasing case (vhich involves the pz) and that in the lasing case (which
involves the pv). The main error in this assumption is that it
implicitly neglacts théﬂdifference 1n deactivation rates between the lasiné
and nonlasing cases. In reality, however, the ée;cgivation rates are
less in the lasing case (because the populations of the higher levels

are less) and Eq. (43 therefore underestimates the power.
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A better formula, which accounts for the differences in

deactivation rates between the lasing and non-issing cases, is the

following:
P(x) = Pl(x) + Pz(x), ' (5)
NV-1/ v-1
P =BT v ) 18,00 - o, IuA@, ©®
v=1l \ 2=0
P,(x) = - %E.'!‘;l Vo1 {:IZ'A(I')P'(:')SV(:') , _ )

where the 6v are nonlasing population densities in the absence of

deactivation, related to the pumping fractions Py by

o .
B, = pvz Py (8)
L

nd 8v is the specific deactivation rate of level v, given by

K'p

PR *

where the sum is over all deactivating speciea a and k; is the reaction

rate coefficient for deactivation of level v by species a. The above
expressions assume that only single-quantum deactivation is occurring.
“These equations also have a simple intuitive interpretation. The first
term, P,(x), is of the same form as Eq. (4) with p: replaced by 6'.

Thus Pl(x) has the interpretation of the laser power in the regiom

upstrean of x if there were no deactivation whatever. This



overestimates the actual laser power. To correct for deactivation
one must add the second contribution Pz(x). vhich 18 geen to be
negative. This term represents the rate of conversion of vibrational energy

to heat due to deactivation in the region upstream of i wvhen the systea

is lasing.

By consilering the nonlasing continuity equations for the pv in the
presence and in the absence of deactivation, one can reexpress Sv(x) in
the following more convenient form:

w1
1

9 o
—_— {l0, (x)-B, (x) Ju(x)A(x)} , (10)
p:(x)A(x) 1=0 L t

sv(!) - -

wvhich expresses Sv(x) in tarms of the known quantities p: and 6v.
eliminating the explicit dependence on the rate coefficients k;. Thus

Eqs. (5), (6), (7), (8), and (10) enable one to estimate the laser power
using only the nonlasing population densities ps as input, without assuming
specific forms for the k:. These equations can therefore also be used

to process experimental nonlasing data, provided that all the p:

(including the ground state) are measured. Although these equations
are strictly applicable only when multiquantum deactivation is absent,
we expect that they will etill provide a useful approximation

vhenever it is possible to represent multiquantum deactivation in terms

of effective single-quantum deactivation rates.
As previously remarked, the procedure by which the laaing populations
D' are cosputed from the nonlasing populations p: in this method assumes

that all vibrational bands are simultaneously lasing. Threshold and cut-
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off are therefore not specifically allowed for in tha formulation. By
forcing a transition to lsse whose gain is below threshold, one obtains
a.negntive contribution to the total power. When these negative contributions
begin to overshadow the positive contributions, P(x) will begin to decrease
wvith lncreasinﬁ x. A reasonable guide to lasing cutoff is to locate the

point at vhich 9P/3x first becomes negative, and to identify P(x) at this
point vith the total laser power.

It should be enphasized that the improved approximate power formula,
esbodied 1in Bqs. (5), (6), (7), (8), and (10), is restricted
in its present form to cold reaction lasers, where the pumping
fractions P, can be unambiguously defined. The simpler approximate
formula of Eq. (4), however, can be applied equally well to chain
reaction lasers. .

The method just described has so far received only a limited
amount of proof-testing. We have applied it to the region
0 < x < 0.375 cm of CL-V HB5-1989, using the more exact RICE-RAD
calculation as a standard of comparison. The simplest formula,
Eq. (4) above, yielded a total power for this region 7% below the RICE-
RAD value. The impcoved formula embodied in Eqs. (5), (6), (7), (8), and
(10) reduced the discrepancy to about 2X. This agreement is not
surprising in view of the fact that a)l bands are simultaneously
lasing and multiquantum deactivation is absent in- this particular test
problem . We have not yet tested the method over the full lasing cavity,
up to and including.cutoff. We hope to present a more detailed
derivation of the method together with more detailed test calculations

in a future publication.
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Velocity vector plot for CL-V HB5-1989, x = 0
to x = 0.45 cm.
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Fig. 3. Pressure coantours for CL-V HB5~1989, x = 0 to x = 0.45 cm.
Maximum and minirum pressures in this interval are 23.2
torr and 5.73 torr, respectively. The H contour line is
21.4 torr and the L contour line {s 7.47 torr. The dif-
ference between adjacent contour lines is 1.75 torr.
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Pressure contours for CL-V HBS-1989, x = 3.05 cm to x = 4.55 cm.
Maximum and minimum pressures in this interval are 19.5 torr
and 15.3 torr, respectively. The H contour line is 19.1 torr
and the L contour line is 15.7 torr. The difference between °
adjacent contour lines is 0.423 torr.
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Fig. 5. Transverse profiles of molar densities of F, DZ’ and total DF
for CL-V HB5=1989 at x = 4.0 cm.
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Fig. 6. Transverse profiles of mass densities of DF(v)

for v= 0, 1, 2, 3, and 4 for CL-V HB5-1989 at
X = 4.0 cm. The unlabeltd.curve is v = &
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Fig. 7. Power profile for Cl~V HB5-1989 with w x = 0.
' - x is distance from the nozzle exit plax‘ief
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Fig. 8. Rectangular and cylindrical pfessures at y = 0.119 cm vs x.
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Plot of maximum temperature vs x for the Rocketdyne baseline
chain reaction calculation.
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* calculation.



